

Dependence of Bootstrap Current, Stability, and Transport on the Safety Factor Profile in DIII-D Steady-State Scenario Discharges

J.R. Ferron, A. White, T.C. Luce, P. Politzer, F. Turco, J. DeBoo, T. Petrie, C. Petty, R. La Haye, A. Hyatt, T. Rhodes, L. Zeng, E. Doyle

October 16, 2009

American Physical Society Division of Plasma Physics 51st Annual Meeting Atlanta, GA, United States November 2, 2009 through November 6, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Dependence of Bootstrap Current, Stability, and Transport on the Safety Factor Profile in DIII-D Steady-State Scenario Discharges

Chris Holcomb¹

With

J. Ferron², A. White³, T. Luce², P. Politzer²,

F. Turco³, J. DeBoo², T. Petrie², C. Petty²,

R. La Haye², A. Hyatt², T. Rhodes⁴,

L. Zeng⁴, E. Doyle⁴

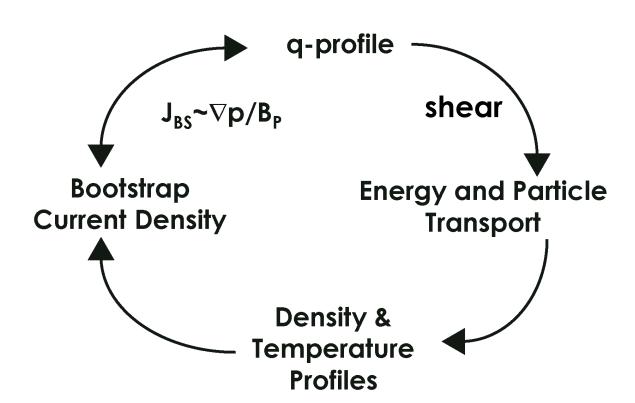
¹Lawrenece Livermore National Laboratory

²General Atomics

³Oak Ridge Institute for Science & Education

⁴University of California, Los Angeles

Presented at APS DPP Nov. 2, 2009


This Work Tests the Dependence of the Bootstrap Current on Choice of Target Safety Factor (q) Profile

Important for Achieving Steady-State Development Goals

- Fully noninductive operation with a high bootstrap current fraction $f_{BS} \sim \beta_P \sim q\beta_N$
- Avoid local noninductive "overdrive" $J_{BS}+J_{AUX}>J_{TOTAL}$ incompatible with steady-state
- Achieve sufficient fusion gain $G \sim \beta_N H_{89}/q_{95}^2$ (G=0.3 for ITER Q=5 operation)
- Conventional approach has been to maximize q_{min} and β_N with q_{95} set by a trade-off with G

There is a Recursive Relationship Between Target q-Profile and J_{BS} at high f_{BS}

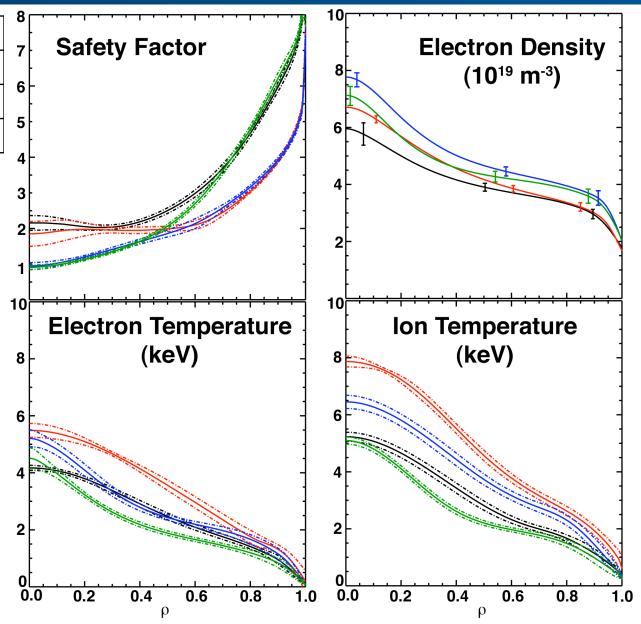
- Limits our ability to predict J_{BS}
- Experiment designed to vary q and measure resulting profiles

Experiment Produced Nine Different q-Profiles With $q_{min}\approx 1.1$, 1.5, 2 and $q_{95}\approx 4.5$, 5.5, 6.5

- q_{95} adjusted by I_P at fixed B_T
- First scan at fixed β_N =2.8 and second scan pushed β_N to maximum limited by stability or confinement
- Measured q, density and temperature profiles
- Calculated Bootstrap Current Density using '99 Sauter Model in ONETWO

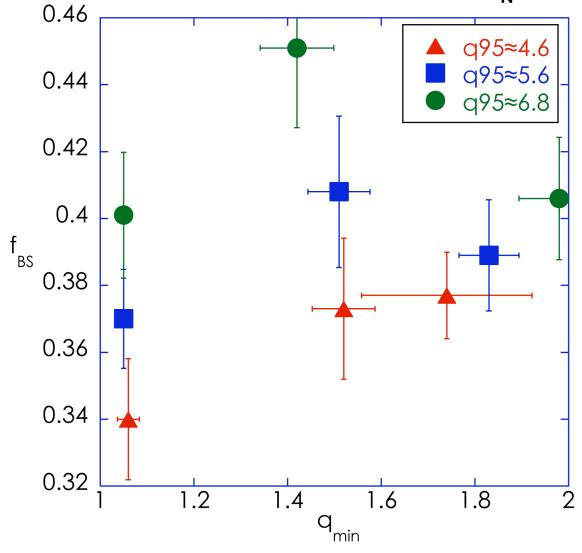
$$\langle J_{BS} \rangle = \frac{F}{B_{T0}} \left[T_e \frac{dn_e}{d\psi} (L_{31}) + n_e \frac{dT_e}{d\psi} (L_{31} + L_{32}) + T_i \frac{dn_i}{d\psi} (L_{31}) + n_i \frac{dT_i}{d\psi} (L_{31} + \alpha L_{34}) \right]$$

 Compared measured quantities averaged over few hundred to ~1000 ms for better statistics

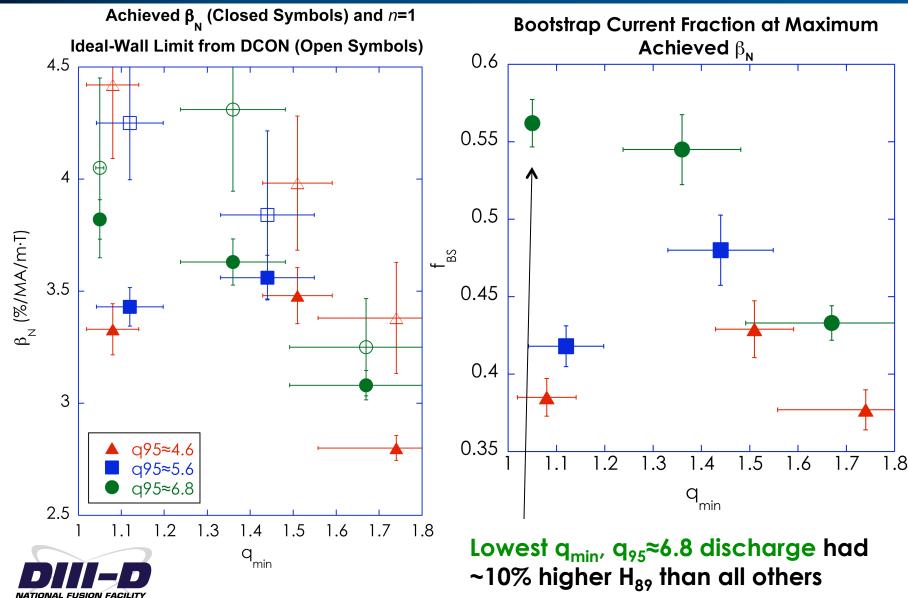

q-Profile Variation at β_N =2.8 Lead to Systematic Differences in Measured Density and Temperature

		q ₉₅	
		4.5	6.5
q _{min}	2	136837	136835
	1.1	136854	136853

- n_e, T_e and T_i generally higher
- At low q_{min}
 - n_e higher and more peaked
 - T_e more peaked
 - T_i lower

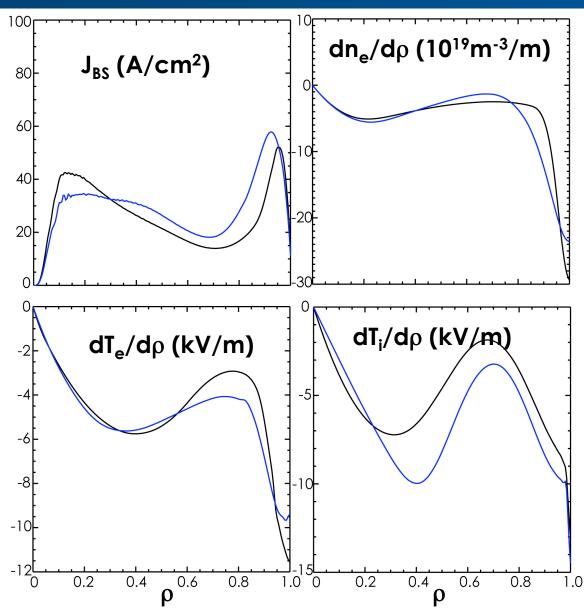


At β_N =2.8, the Bootstrap Fraction Increases With q_{95} As Expected From $f_{BS}\sim q\beta_N$


- Bootstrap Fraction leveled off or dropped with q_{min} above ~1.5
- This is contrary to expected $q\beta_N$ scaling

Bootstrap Current Fraction, β_N =2.8

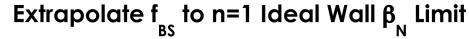
Increased Stability at Lower q_{min} Resulted in Highest Achieved β_N and f_{BS} Occurring at $q_{min} \approx 1.1$

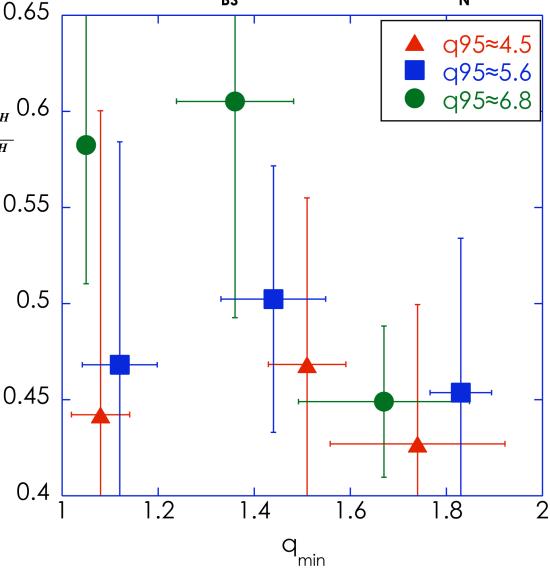


SAN DIEGO

Increasing β_N Broadens J_{BS} By Increasing ∇T_e and ∇T_i at Larger Radius

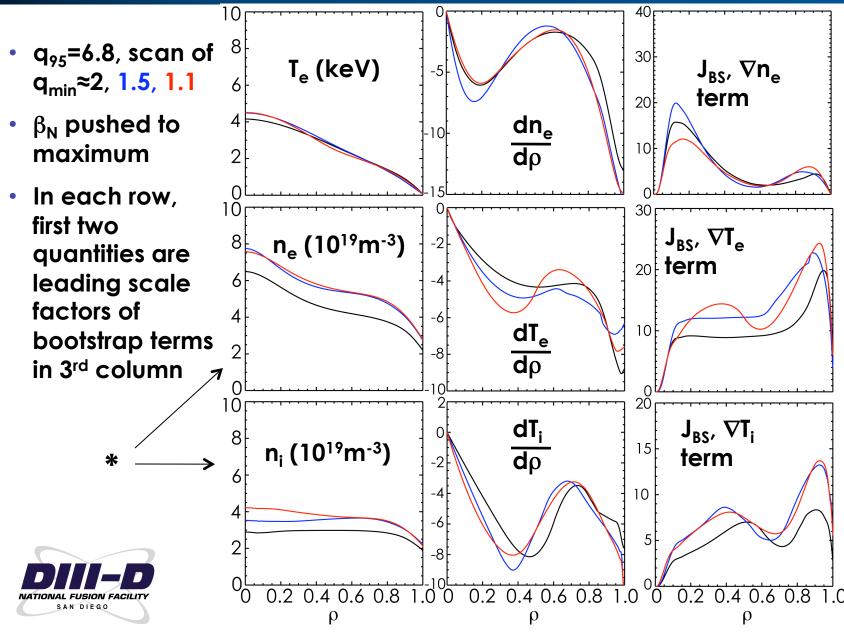
- This example:
 q₉₅=5.6, q_{min}≈1.5
 β_N≈ 2.8, 3.6
- Similar broadening with β_N for all q-profiles
- Broadening favorable for avoiding local noninductive current overdrive near ρ~0.2
- dn_e/dρ change with β_N not clearly systematic with q

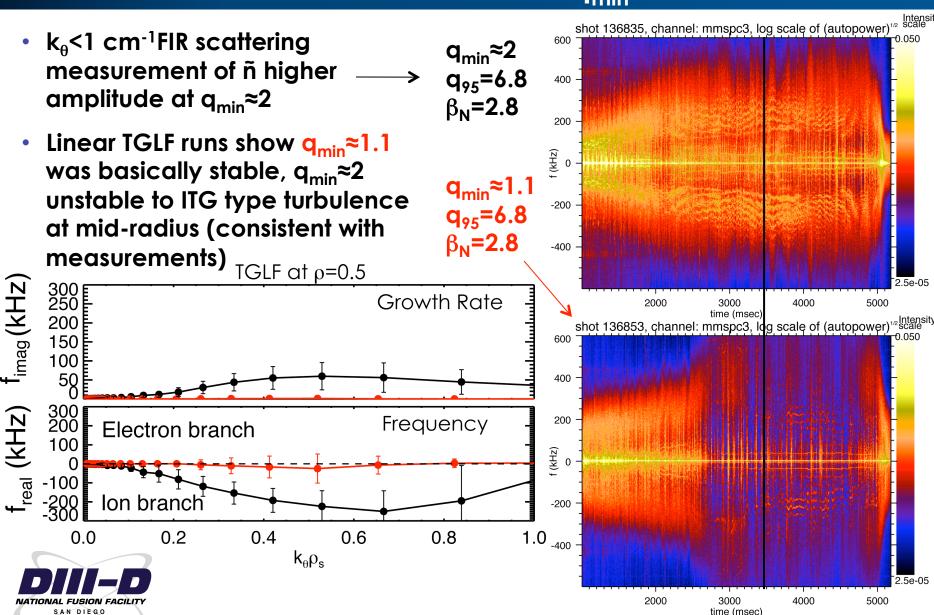

Extrapolating to the n=1 Ideal Wall β_N Limit Suggests f_{BS} Maximizes Near $q_{min}\approx 1.5$


• Used measured f_{BS}/β_N to scale f_{BS} to ideal wall limit

$$\frac{f_{BS}^{IW}}{\beta_{N}^{IW}} = \left(\frac{\frac{f_{BS}^{H}}{\beta_{N}^{H}} - \frac{f_{BS}^{L}}{\beta_{N}^{H}}}{\beta_{N}^{H} - \beta_{N}^{L}} \right) (\beta_{N}^{IW} - \beta_{N}^{H}) + \frac{f_{BS}^{H}}{\beta_{N}^{H}} 0.6$$
0.55

(L, H, IW refer to cases with β_N =2.8, maximum, calculated ideal wall)


• Accounts for density and temperature profile scaling with β_{N}



Lower f_{BS} at q_{min} ≈ 2 Caused Mostly By Lower Density and Lower Temperature Gradients*

q_{min}≈2 Had Higher Measured Density Fluctuations and Calculated Growth Rates Than q_{min}≈1.1

Summary and Conclusions

- In our scans of q_{min} and q_{95} , the bootstrap current fraction increased with q_{95} but did not continue to increase with q_{min} above about 1.5 as expected by $f_{BS} \sim q \beta_N$
- With existing control tools, q_{min}≈1.5 appears optimal for maximizing bootstrap current if the calculated ideal wall limit can be reached (only narrowly more so than q_{min}≈1.1)
- $q_{min}\approx 2$ discharges achieved lower β_N and calculated n=1 β_N limits, had increased transport, lower density, lower temperature gradients, and as a result did not produce as much bootstrap current
- Highest f_{BS} achieved at highest q_{95} (=6.8), but scan suggests lower q_{95} is required for more reactor relevant fusion gain $G \sim \beta_N H_{89} / q_{95}^2$
- New tools (off-axis NBI, more ECCD) may allow access to higher β_{N} limits and higher bootstrap fractions

